Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis(1,3,5-triazine-2,4,6-triamine- κN^{1})silver(I) nitrate

Al-shima'a A. Massoud ${ }^{\text {a }}$ and Vratislav Langer ${ }^{\text {b }}$
${ }^{\text {a }}$ Physical Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden, and ${ }^{\text {b }}$ Environmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
Correspondence e-mail: shimo@chalmers.se

Received 11 March 2009
Accepted 6 April 2009
Online 18 April 2009
The title compound, $\left[\operatorname{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6}\right)_{2}\right] \mathrm{NO}_{3}$, has an alternating two-dimensional bilayer structure supported by extensive hydrogen bonds. The $\left[\operatorname{Ag}(\text { melamine })_{2}\right]^{+}$cationic monomers (melamine is 1,3,5-triazine-2,4,6-triamine) are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form two-dimensional sheets. Nitrate groups are sandwiched between two sheets through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. An almost perfectly linear coordination geometry is found for the Ag^{I} ions. The triazine ligands are slightly distorted due to $\pi-\pi$ interactions.

Comment

Silver(I) is able to form linear (Greenwood \& Earnshaw, 1997), trigonal-planar or tetrahedral coordination geometries due to the presence of vacant s and p orbitals. Our ongoing research concerns the synthesis, structure and biological activity of different silver(I) compounds with pyridine-type ligands (Abu-Youssef et al., 2007) and especially aminopyridines (Abu-Youssef et al., 2006a,b). Melamine is considered an interesting ligand from a supramolecular chemistry point of view, due to the presence of three donor and three acceptor N atoms. This makes the probability of achieving three-dimensional network structures via melamine-metal coordination bonds and melamine-melamine hydrogen bonds much greater than with pyridines and pyrazines. Melamine is also used as a co-ligand to extend the dimensionality of a structure when poor coordinating ligands are used (Zhang et al., 2004). Although melamine-melamine hydrogen bonds facilitate the solubility of the ligand in water, coordination of the ligand to metals is not easy, and once the compound is formed the solubility decreases. Against this background, we have prepared the title silver(I)-melamine complex, (I), and present its structure here.

The silver(I) centre of (I) is coordinated to two monodentate melamine ligands, each through one of its triazine ring N atoms, forming a linear coordination geometry around the silver(I) ion (Fig. 1). The $\mathrm{Ag}-\mathrm{N}$ bond distances are slightly
longer than those reported for $\left.[\mathrm{Ag} \text { (melamine) })_{2}\right] \mathrm{ClO}_{4}(\mathrm{Zhu}$ et al., 1999) and shorter than those reported for $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\right.$ (melamine) $]_{n}$ (Sivashankar et al., 2001), while the $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ bond angle is larger than those found in the above-mentioned compounds (Table 2). Only a weak interaction between the Ag^{I} ion and the nitrate group is found, with geometric values almost identical to those observed for $\left.[\mathrm{Ag} \text { (melamine) })_{2}\right] \mathrm{ClO}_{4}$ (Zhu et al., 1999) (Table 2). A similar interaction was also found in $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right) \text { (melamine) }\right]_{n}$, where $\mathrm{Ag}-\mathrm{O} 1$ is 2.569 (2) A (Table 2) with a distorted trigonal-planar coordination geometry around the Ag^{I} ion.

(I)

Strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) connect the cationic $\left[\mathrm{Ag}(\text { melamine })_{2}\right]^{+}$units of (I) to form a two-dimensional honeycomb sheet (Fig. 2a). This two-dimensional honeycomb sheet is best described as a chain of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded melamine ligands connected by Ag^{I} ions. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds in (I) $[D \cdots A=3.013$ (2)$3.041(2) \AA$ and $\left.D-\mathrm{H} \cdots A=170(2)-177(3)^{\circ}\right]$ are much stronger than those found in $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\right.$ (melamine $\left.)\right]_{n}(D \cdots A=$ $3.077 \AA$ and $D-\mathrm{H} \cdots A=159^{\circ}$).

A similar double-layer honeycomb structure was found for a compound of Ag^{I} with isocyanurate, $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{H}_{2} \mathrm{O}_{3}\right)_{4}\right.$ (bpy)] (bpy is $4,4^{\prime}$-bipyridine; Zhang et al., 2007) (Fig. 2b), in which the bilayer sheets are connected via bpy ligands to form a three-dimensional network structure. The two-dimensional honeycomb sheets in this isocyanourate compound are formed through shorter $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [2.836 (4)2.891 (4) \AA]. Both this compound and (I) exhibit the same type of hydrogen-bonded ring, a small one with graph-set symbol $R_{2}^{2}(8)$ (Bernstein et al., 1995), formed through direct hydrogen bonding between melamine ligands in (I) and between isocyanourate ligands in $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{H}_{2} \mathrm{O}_{3}\right)_{4}\right.$ (bpy)].

Figure 1
A perspective drawing of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.

Figure 2
(a) Projection of the structure of (I) along the b axis, showing the twodimensional honeycomb sheet formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (dashed lines) between melamine ligands. The large six-membered ring shows four $R_{2}^{2}(8)$ motifs. Nitrate anions have been omitted for clarity. (b) Projection of the structure of $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{3} \mathrm{~N}_{3} \mathrm{H}_{2} \mathrm{O}_{3}\right)_{4}(\right.$ bpy $\left.)\right]$ (Zhang et al., 2007) along the a axis, showing a similar two-dimensional honeycomb sheet formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). The large sixmembered ring encompasses four $R_{2}^{2}(8)$ motifs. Bipyridine molecules have been omitted for clarity.

Although compound (I) and $\left[\mathrm{Ag}(\text { melamine })_{2}\right] \mathrm{ClO}_{4}$ have a common cation, they pack differently, and only a ladder structure is formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds for the latter. This can be attributed to the difference in size between the nitrate and perchlorate counter-ions. The smaller nitrate anions in (I) are firmly sandwiched between the abovementioned hydrogen-bonded sheets via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in the formation of another bilayer hydrogenbonded two-dimensional sheet of molecules. The thickness of this bilayer sheet is larger than the sum of the van der Waals radii for two silver(I) ions ($3.40 \AA$ A Zhang et al., 2007), with an $\mathrm{Ag} \cdots \mathrm{Ag}$ distance of 3.924 (3) \AA, in contrast with $\left[\mathrm{Ag}_{4}\left(\mathrm{C}_{3} \mathrm{~N}_{3}-\right.\right.$ $\left.\mathrm{H}_{2} \mathrm{O}_{3}\right)_{4}($ bpy $)$], where the $\mathrm{Ag} \cdots \mathrm{Ag}$ distance is $3.004 \AA$, which confirms a higher interaction within the sheet.

There are 11 different $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions observed in (I) (Table 1). Only those with $D \cdots A$ distances in the range 2.969 (2)-3.271 (2) \AA and $D-H \cdots A$ angles in the range $146(2)-170(3)^{\circ}$ are considered strong hydrogen bonds, but

Figure 3
A perspective view of (I), showing how the nitrate anions support the structure, being alternately sandwiched between two sheets of [Ag(melamine) $\left.)_{2}\right]^{+}$through extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). (In the electronic version of the paper, the upper sheet is red and the lower sheet is green, and melamine ligands are shown as black spheres.)
they are still weaker than those found in $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\right.$ (melamine $)]_{n}(D \cdots A=3.177$ and $3.198 \AA$, and $D-H \cdots A=169$ and $\left.178^{\circ}\right)$. Fig. 3 shows two cationic sheets of $\left[\mathrm{Ag}(\text { melamine })_{2}\right]^{+}$ and illustrates how the nitrates are packed between them, mainly through atoms O1, connected to the upper sheet, and O3, connected to the lower sheet, via hydrogen bonds to the NH_{2} groups of the melamine ligands. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (I) are weaker than the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Melamine acts as a bridging ligand in the case of $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right) \text { (melamine) }\right]_{n}$, giving rise to a one-dimensional zigzag structure which is extended into a three-dimensional structure via both $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

The angle between the mean planes of the triazine rings of (I) is $8.5(1)^{\circ}$. The triazine rings show some distortion due to hydrogen bonding and $\pi-\pi$ interactions. Normally, $\pi-\pi$ stacking takes place only when the rings are parallel displaced (offset or slipped stacking), and the angle between the centroid-to-centroid vector and the normal of the ring should be around 20° and the centroid-to-centroid distances up to $3.8 \AA$ (Janiak, 2000). In compound (I), the centroid-tocentroid distance is 3.821 (2) \AA, the perpendicular distance from the centroid to the plane of the opposite ring is $3.6 \AA$ and the angle between the centroid-to-centroid vector and the normal of the ring is 17.8°, close to normal $\pi-\pi$ stacking values. Such π-system aggregates are stabilized by the polar solvent effect (Janiak, 2000). This can acount for the insolubility observed for compound (I) in water.

Experimental

To an aqueous solution (4 ml) of $\mathrm{AgNO}_{3}(0.34 \mathrm{~g}, 2 \mathrm{mmol})$ was added a methanolic solution (2 ml) of the melamine ligand ($0.5 \mathrm{~g}, 4 \mathrm{mmol}$).

When a white gelatinous precipitate had formed, drops of 0.1 N HNO_{3} were added. The mixture was then heated and stirred to dissolve most of the precipitate. The turbid solution was filtered and allowed to stand for a couple of days. Colourless needles of (I) suitable for X-ray diffraction measurements were collected and dried in air (yield $\sim 60 \%$ relative to the metal). ${ }^{1} \mathrm{H}$ NMR in dimethyl sulfoxide gave only one peak at $\delta(6 \mathrm{H})=6.34$ p.p.m.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6}\right)_{2}\right] \mathrm{NO}_{3}} \\
& M_{r}=422.16 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.9908(5) \AA \\
& b=9.8312(6) \AA \\
& c=10.059(6) \AA \\
& \alpha=64.296(1)^{\circ} \\
& \beta=77.915(1)^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.810, T_{\text {max }}=0.925$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.071$
$S=1.00$
4651 reflections

256 parameters
All H-atom parameters refined
$\Delta \rho_{\text {max }}=0.99 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.94 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{~N} 23{ }^{\text {i }}$	0.83 (3)	2.21 (3)	3.032 (2)	177 (3)
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O} 1^{\text {ii }}$	0.82 (3)	2.23 (3)	2.901 (2)	139 (3)
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.82 (3)	2.52 (3)	3.201 (2)	141 (3)
$\mathrm{N} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1^{\text {iii }}$	0.70 (3)	2.27 (3)	2.969 (2)	170 (3)
$\mathrm{N} 14-\mathrm{H} 14 B \cdots \mathrm{O} 3^{\text {i }}$	0.77 (3)	2.26 (3)	3.012 (2)	165 (3)
$\mathrm{N} 16-\mathrm{H} 16 A \cdots \mathrm{~N} 25^{\text {iv }}$	0.81 (3)	2.20 (3)	3.013 (2)	176 (3)
N16-H16B . ${ }^{\text {d }}$ O3	0.84 (3)	2.22 (3)	2.909 (2)	139 (2)
N16-H16B.. ${ }^{\text {O2 }}$	0.84 (3)	2.54 (3)	3.271 (2)	146 (2)
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{~N} 13{ }^{\text {v }}$	0.87 (3)	2.18 (3)	3.041 (2)	170 (2)
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 3$	0.84 (3)	2.38 (3)	3.013 (2)	132 (2)
$\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 2$	0.84 (3)	2.46 (3)	2.982 (2)	121 (2)
$\mathrm{N} 24-\mathrm{H} 24 A \cdots \mathrm{O} 3^{\text {vi }}$	0.75 (3)	2.31 (3)	3.044 (2)	163 (3)
$\mathrm{N} 24-\mathrm{H} 24 B \cdots \mathrm{O} 1^{\text {vii }}$	0.81 (3)	2.25 (3)	3.016 (2)	160 (2)
$\mathrm{N} 26-\mathrm{H} 26 A \cdots \mathrm{O} 1^{\text {ii }}$	0.81 (3)	2.48 (3)	2.972 (2)	120 (2)
$\mathrm{N} 26-\mathrm{H} 26 \mathrm{~B} \cdots \mathrm{~N} 15^{\text {vi }}$	0.83 (3)	2.21 (3)	3.034 (2)	174 (3)

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+2,-y,-z+1$; (iii) $-x+2,-y,-z$; (iv) $x, y, z-1$; (v) $x-1, y+1, z$; (vi) $x, y, z+1$; (vii) $-x+1,-y+1,-z+1$.

H atoms were located in a difference Fourier map and refined freely in an isotropic approximation.

Table 2
Comparison of $\mathrm{Ag}-\mathrm{N}$ bond lengths (A), $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ angles (${ }^{\circ}$) and $\mathrm{Ag} \cdots \mathrm{O}$ interactions (A) in some related compounds.

Compound	$\mathrm{Ag}-\mathrm{N}$	$\mathrm{Ag}-\mathrm{N}$	$\mathrm{N}-\mathrm{Ag}-\mathrm{N}$	$\mathrm{Ag} \cdots \mathrm{O}$
$\left[\mathrm{Ag}(\text { melamine })_{2}\right] \mathrm{NO}_{3},(\mathrm{I})$	$2.1925(16)$	$2.2083(16)$	$178.58(6)$	$2.7924(16)$
$\left[\mathrm{Ag}(\text { melamine })_{2}\right] \mathrm{ClO}_{4}{ }^{a}$	$2.162(4)$	$2.179(4)$	$167.7(2)$	$2.776(4)$, $2.785(6)$
$\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)(\text { melamine })\right]_{n}{ }^{b}$	$2.289(2)$	$2.260(2)$	$127.2(6)$	$2.569(2)$

References: (a) Zhu et al. (1999); (b) Sivashankar et al. (2001).

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

AAM thanks the Swedish International Development Agency for financial support and Professor Lars Öhrström, Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden, for his supervision.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3109). Services for accessing these data are described at the back of the journal.

References

Abu-Youssef, M., Dey, R., Gohar, Y., Massoud, A., Öhrström, L. \& Langer, V. (2007). Inorg. Chem. 46, 5893-5903.

Abu-Youssef, M., Langer, V. \& Öhrström, L. (2006a). Chem. Commun. pp. 1082-1084.
Abu-Youssef, M., Langer, V. \& Öhrström, L. (2006b). Dalton Trans. pp. 25422550.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.
Bruker (2003). SMART (Version 5.63) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Greenwood, N. N. \& Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sivashankar, K., Ranganathan, A., Pedireddi, V. \& Rao, C. (2001). J. Mol. Struct. 559, 41-48.
Zhang, J., Li, Z.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. \& Yao, Y.-G. (2004). J. Mol. Struct. 697, 185-189.

Zhang, J., Shen, Y.-C., Qin, Y.-Y., Li, Z.-J. \& Yao, Y.-G. (2007). CrystEngComm, 9, 636-639.
Zhu, H., Yu, Z., You, X., Hu, H. \& Huang, X. (1999). J. Chem. Crystallogr. 29, 239-242.

